EST. 1870 Organic Corn Test in Ohio, 3-yr. summary

Corn & Emerging Crops Horticulture and Crop Science **Rich Minyo Corn Performance Test Horticulture and Crop Science**

THE OHIO STATE UNIVERSITY

COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES

— US Organic Corn

\$61.9 billion sales (2020)

55% growth, Ac (2011 to 2016)

Mostly use for livestock

Crop Rotation (4y)

Cover Crops (40%)

Manure &/or Compost (90%)

Biostimulants (20-25%)

2018 (source: https://non-gmoreport.com/articles/organic-corn-soybean-acres-looking-good-in-the-u-s-as-harvest-nears/)

Organic Corn - Nutrient Sources

CFAES

Cover Crops

Biologically fixed N

Fall-seeded mix Legume + Grass

Grasses dominate

Legumes fix additional N

Crop Rotation

Supply necessary Nitrogen Legumes:
Alfalfa

2-3 years
planting

Soybean doesn't supply N needed

Supplementary Sources

Meal

Disease & Weed Management

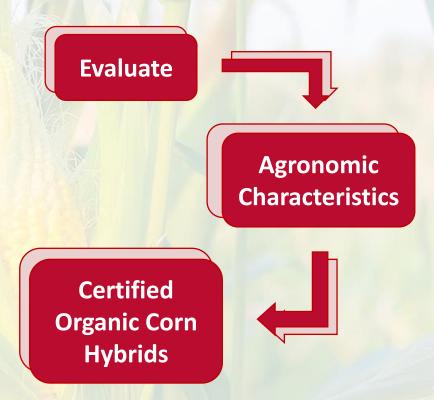
Diseases

Good Crop Rotation

Adequate Nutrients

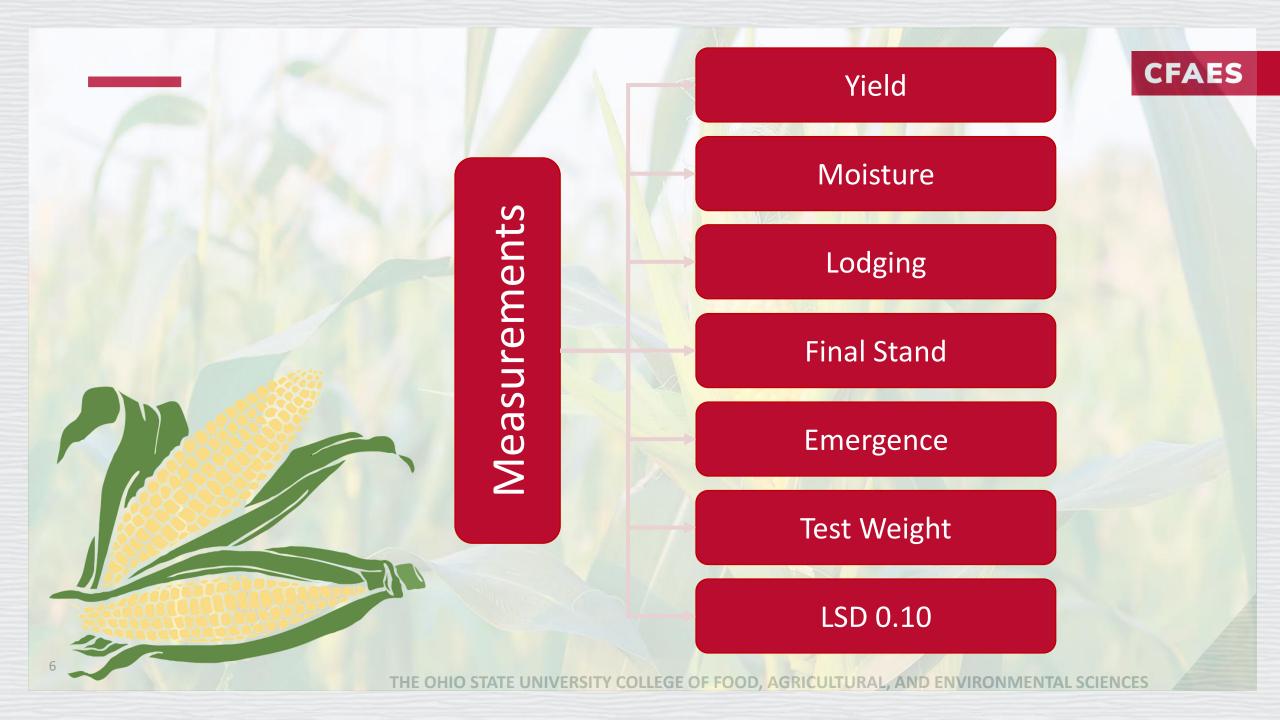
Varietal Selection

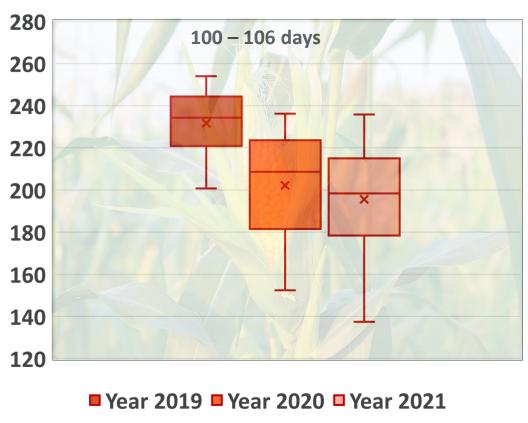
Beneficial Fungus


Weeds

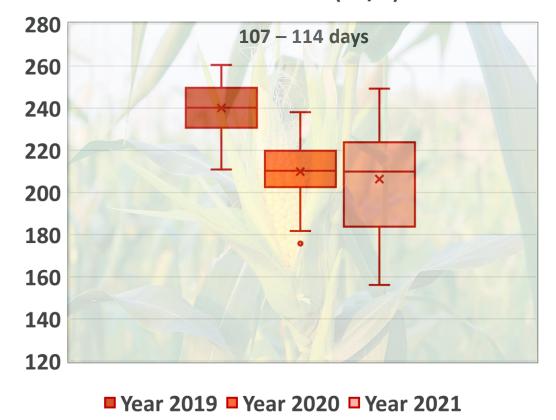
- Crop Rotation
- Cover Crops
- Tillage
- Mechanical Cultivation
- Later Plantings

Ohio Organic Corn Performance Test

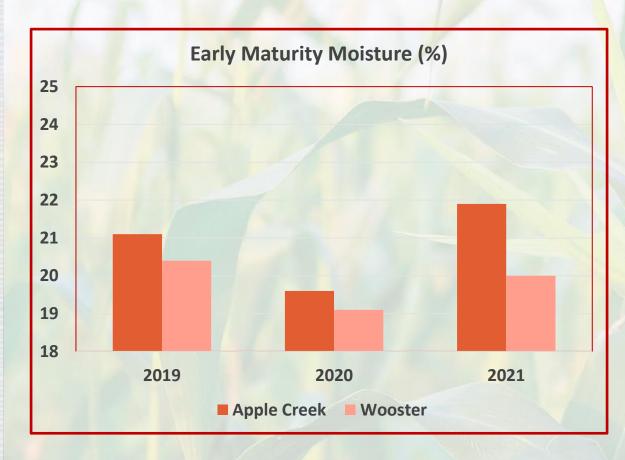


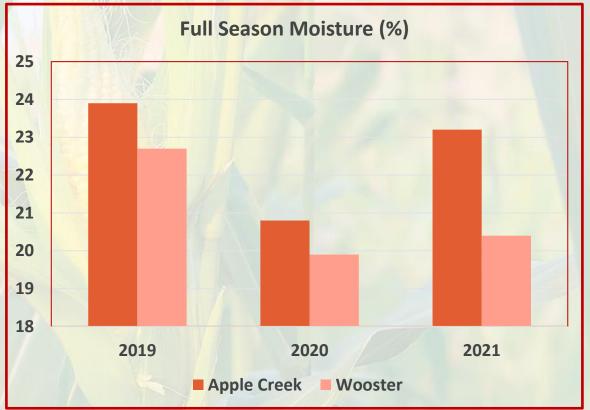

From 2019 – present:

- The purpose is to **evaluate** certified organic corn hybrids for **grain yield** and other important **agronomic** characteristics.
- Results can assist **farmers and industry** in **selecting hybrids** best **suited** to different production **environments**.

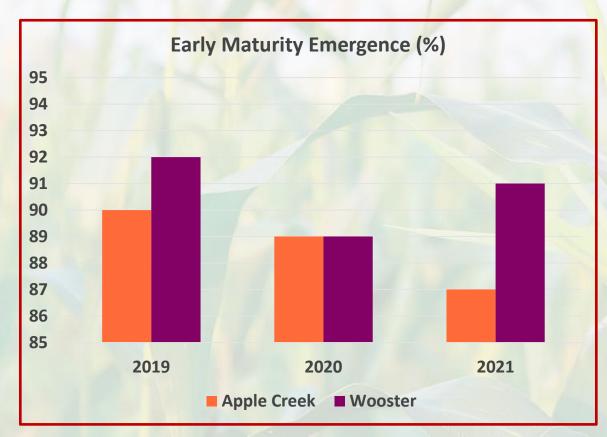


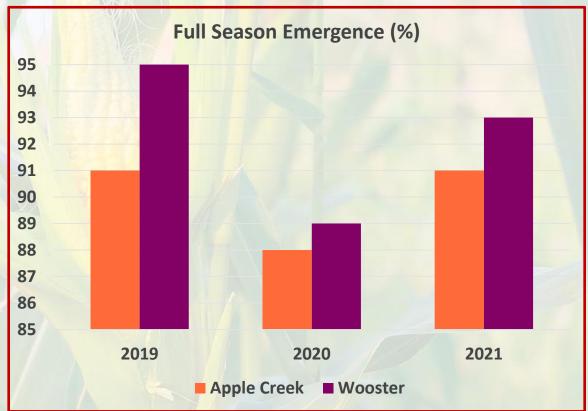
— Yield: early vs. full season test





Full Season Yield (Bu/A)




— Harvest Moisture



— Emergence (%)

Lodging

— Take-Aways: 3 yr. summary (2019 - 2025 AES

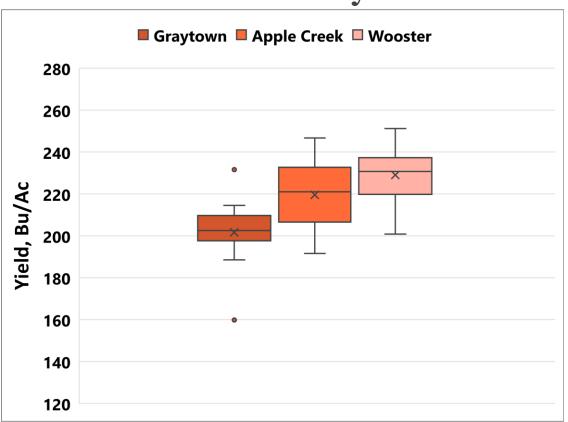
Consistently 180 Bu/Ac or more

Hybrid differences, year to year, site to site

Full season test (longer maturities), generally higher yields

Lower harvest moisture with early test (shorter maturities)

Generally better establishment with full season


Lodging can be an issue, regardless of test

— 2022 Results

Early Maturity Test 100 – 106 days

Full Maturity Test 107 – 114 days

Wooster/Apple Creek planted at 34K seeds/ac. Graytown planted at 32.5K seeds/ac. A total of 29 hybrids tested in 2022.

- Take-Aways: 2022

- Hybrid differences and yield levels close or above 200 Bu/Ac
- Wet/cool soil conditions in May delayed field preparation and planting
- The Wooster and Apple Creek received over 2" of rain within 48 hours of planting: which impacted the emergence on most hybrids. Dry conditions for Graytown
- The weather presented unique challenges: delayed planting and delayed harvest, two sites harvested on December 5th
- Foliar Diseases present:
 - Low/Moderate levels of Gray Leaf Spot
 - A few Northern Corn Leaf Blight lesions
 - Tar Spot, late in the season, likely not impact yield
 - Low levels of Diplodia and Gibberella, a few hybrids

Table 1. Performance of hybrids in the Organic Early Maturity trial. (106 Day RM and Earlier) North Central / Northeast Ohio, 2022.

			Graytown			Apple Creek				Wooster						Sumr	nary						
						Finai					Finai					Finai			Harv.		Final		
<u>Brand</u>	Hybrid	RM	Yield		Ldg.		Emg.	Yield		Ldg.		Emg.	Yield	Mst.			Emg.	Yield		Ldg.		Emg.	
			Bu/A	%	, ——			Bu/A	—— ⁹	o ——	100/A	-%-	Bu/A	%	o ——	100/A		Bu/A	%	,	100/A	-%-	Lbs.
American Organic Blue River Blue River Blue River Merit	AM 2378 48G35 49M23 54C27 O 5454	103 102 103 105 104	175.1 192.0 177.1 206.9 189.6	15.6 15.7 15.7 15.7 15.7	0 0 1 2 2	303 320 321 318 328	89 96 97 92 97	194.0 188.2 226.3 204.6 245.0	17.4 18.4 17.8 19.1 19.9	15 1 0 5 2	254 230 311 255 283	71 65 88 72 81	221.0 215.9 213.0 221.6 240.2	17.5 18.1 17.6 18.7 19.7	0 1 0 2 2	285 287 314 289 320	80 82 88 82 91	196.7 198.7 205.5 211.0 224.9	16.8 17.4 17.0 17.8 18.4	5 1 0 3 2	280 279 315 287 310	80 81 91 82 90	58.1 57.3 57.4 56.9 55.8
Merit Prairie Hybrid Prairie Hybrid Prairie Hybrid Viking	O 6160 PH 2741 PH 4211 PH 5281 O.18-06UP	106 102 106 102 106	199.4 175.5 200.5 152.0 178.5	16.1 15.9 16.6 17.7 15.6	14 6 1 0	323 317 318 327 333	97 93 95 95 98	211.2 214.3 219.4 212.9 230.7	18.9 17.8 19.6 20.8 17.3	0 2 1 0 1	276 267 281 292 296	78 76 80 81 84	215.0 233.5 234.7 235.5 222.8	18.8 17.7 20.0 21.5 17.2	0 1 0 16 1	309 308 276 297 299	88 87 77 83 85	208.5 207.8 218.2 200.1 210.7	17.9 17.1 18.7 20.0 16.7	5 3 1 6 1	303 297 291 306 309	88 85 84 86 89	56.4 56.4 56.7 53.8 59.1
Viking Viking Viking Viking Welter Seed & Honey Welter Seed & Honey		102 104 101 100 102 104	177.7 169.0 184.2 171.3 166.0 205.8	15.6 15.7 16.0 16.1 15.7 16.2	1 2 4 0 2 1	328 282 316 299 319 319	95 83 94 89 95 93	211.7 203.9 218.2 132.8 216.7 232.1	17.1 18.8 18.6 17.0 19.3 20.5	1 0 1 0 6 2	285 240 290 259 264 272	80 69 82 73 75 77	230.8 202.8 215.9 202.6 225.8 233.9	17.0 18.5 18.4 17.0 18.8 20.6	2 1 2 0 4 8	307 257 286 282 292 311	86 72 80 80 83 90	206.7 191.9 206.1 168.9 202.8 223.9	16.5 17.7 17.6 16.7 17.9 19.1	1 1 2 0 4 3	307 259 297 280 292 301	87 75 86 81 84 87	58.2 56.7 57.8 56.9 56.1 55.4
High Average Low LSD .10			206.9 182.5 152.0 20.6	17.7 16.0 15.6 0.6	14 2 0 6	333 317 282 15	98 94 83 5	245.0 210.1 132.8 19.5	20.8 18.6 17.0 0.7	15 2 0 NS	311 272 230 33	88 77 65 9	240.2 222.8 202.6 17.2	21.5 18.6 17.0 0.8	16 3 0 7	320 295 257 24	91 83 72 7	224.9 205.2 168.9 21.2	20.0 17.7 16.5 0.8	6 2 0 NS	315 295 259 15.3	91 85 75 4.7	59.1 56.8 53.8 1
Soil Type Soil Test (pH,P,K) M- Previous Crop Planting /Harvest Date Tillage Nutrients Applied (N,F Cooperator County	es		Hoytville 6.9, 77, Alfalfa May 23 Conven None Steve T Ottawa	269 / Nov. ^r tional T	14, 20	22		Canfield 7.5, 130 Oats / C May 25 Conven 43, 63, 2 Mike Sw Wayne), 340 Cover C / Dec. tional 1 200	rop M 5, 202 Fillage	2	ARDC	Canfield 7.1, 64, Oats / C May 25 Conven 43, 63, Mike Sv Wayne	272 Cover C / Dec. : tional T 200	rop M 5, 202 īllage	2	ARDC						

- For More Information

Hybrid performance results of Ohio Performance Trials

Available on-line: https://u.osu.edu/perf/archive/

Information regarding entering OSU Crop Performance Trials are available at: https://u.osu.edu/perfentry/

Contacts:

Osler Ortez (Ortez.5@osu.edu)

Rich Minyo (Minyo.1@osu.edu)

Organic Corn Growers... A survey

OHIO AGRICULTURAL RESEARCH AND DEVELOPMENT CENTER

RESEARCH SUMMARY

A Survey of Organic Corn Growers in Ohio, Indiana, Michigan, and Pennsylvania

Caroline Brock, Doug Jackson-Smith, Subbu Kumarappan, Doug Doohan, Steve Culman, Matt Kleinhenz, Cathy Herms, Cassandra Brown, The Ohio State University Soil Balancing Team

Organic corn acreage in the United States increased by more than 55% between 2011 and 2016, driven largely by demand from organic livestock producers, particularly dairies.¹ However, aside from USDA census data, relatively little is known about these farms and their management practices. Additional information about organic corn farms will help guide education and research initiatives for continued growth in the region's organic corn production.

In the spring of 2018, we mailed a survey to all organic corn growers in Ohio, Indiana, Michigan, and Pennsylvania. These four states collectively represent one-third of all U.S. organic corn growers and produce about 20% of the nation's organic corn.²

Survey questions covered overall farm operation, specific field practices, economic data, and farm management decision-making, particularly concerning soils. Of the 1,495 farms who grew corn in 2017, we received 859 usable responses (57% response rate, margin of error is 2%).

Key findings are summarized in this report. More detailed information is available at go.osu.edu/orgcorn.

Access complete report here:

https://offer.osu.edu/offer.osu.edu/research/orgcorn

Thank you!!! Any questions?

Osler A. Ortez

Corn & Emerging Crops Horticulture and Crop Science

ortez.5@osu.edu | (330) 263-9725 214 Williams Hall, Wooster, OH

EST. 187 MICHIEL STATES ALE STATES ALE

Double Crop Sunflower, is it an option? 1-yr. summary

Osler A. Ortez

Corn & Emerging Crops Horticulture and Crop Science

Jim Jasinski, IPM Eric Richer, Farm Mgmt.

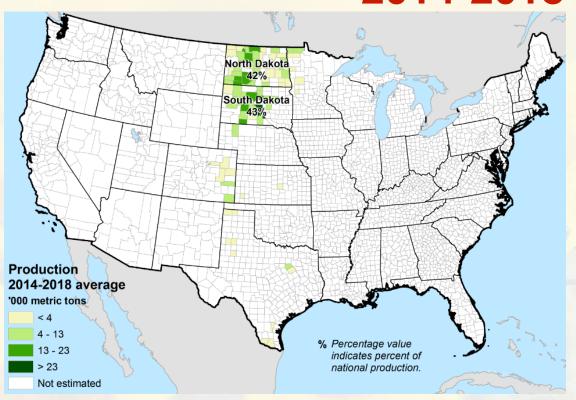
THE OHIO STATE UNIVERSITY

COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES

Global Production (2022-2023)

Russia = 33%

Ukraine = 20%


Europe Union = 19%

Argentina = 8%

US Production (3% of Global)

2014-2018

For 2022-2023

- North Dakota = 41%
- South Dakota = 32%
- Kansas = 7%
- Colorado = 5%

Primary Production in US (~80% of total)

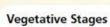
Oil

- Low cholesterol and high fatty acid concentration
- Biodiesel or high-quality edible vegetable oil

Uses

Seeds

- Production of seeds
- High protein value, & amino acids (leucine, valine, isoleucine)
- Sunflower meal
- Confectionary (in-shell, snacks)



Others

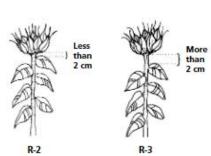
- Ethnomedicine
- Cut-flowers
- Photography
- Cover crop, pollinator services
- Natural rubber

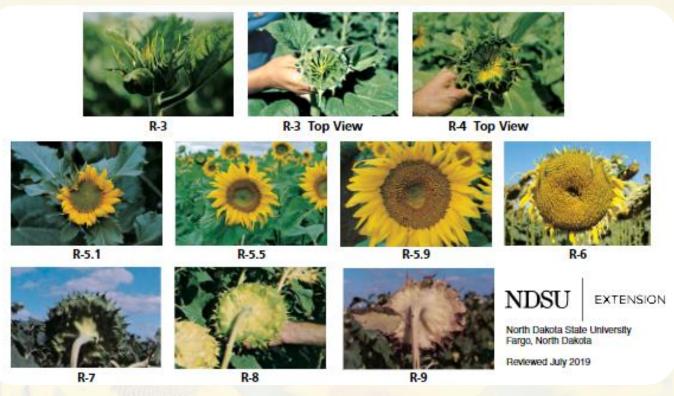
CFAES

Crop Growth

True leaf - 4 cm

Reproductive Stages


Stages of **Sunflower** Development


Reviewed by Hans Kandel, Extension Agronomist

Authors

A.A. Schneiter, former NDSU professor
J.F. Miller, former USDA-ARS

D.R. Berglund, emeritus NDSU extension agronomist

Study Locations

- Wooster Campus (Wayne County)
- Western Agricultural Research Station (Clark County)
- Northwest Agricultural Research Station (Wood County)

Hybrids

N4H161 CL

• <u>Ultra-early</u> high-oleic oilseed

Short plant height

https://nuseed.com/us/seed/n4h302e/

https://nuseed.com/us/seed/n4h161-cl/

N4H302 E

Early high-oleic oilseed

Good late season plant health

CP 455 E

https://www.winfieldunited.com/product s/winfield-united-seed/sunflower/cp455e

Medium-early high-oleic oilseed

Medium-short plant with excellent drydown

CFAES

Summary

Trt	Hybrid	SR (seeds/Ac)
1	Ultra Early	17K
2	Ultra Early	22K
3	Ultra Early	27К
4	Early	17K
5	Early	22K
6	Early	27К
7	Mid-Early	17K
8	Mid-Early	22K
9	Mid-Early	27К

Double Crop Sunflower in Ohio, is it an option?

Osler Ortez, Assistant Professor, Corn and Emerging Crops Jim Jasinski, Professor, Integrated Pest Management Eric Richer, Field Specialist, Farm Management

In addition to double cropping with forages and double cropping with wheat and soybean, other

alternatives may become feasible within the crop system. In 2022, three field experiments were established to study sunflowers' viability as a double crop after wheat or barley harvest in Ohio. The study had three Perdue commercial high oleic sunflower varieties:

- Ultra-early maturity (N4H161 CL)
- Early maturity (N4H302 E)
- Mid-early maturity (CP 455 E)

These varieties were studied across three

seeding rates: 17,000 seeds per Acre, 22,000 seeds per Acre, and 27,000 seeds per Acre.

Table 1. Study locations, planting dates, harvest dates, and double crop sunflower yields expressed in pounds per Acre (lbs/Ac) at 10% moisture.

Location	Planting Date	Harvest Date	Min. Yield	Average Yield	Max. Yield
Northwest, Wood County	6/29/2022	11/18/2022	1,296 lbs/Ac	1,867 lbs/Ac	2,599 lbs/Ac
Western, Clark County	7/11/2022	11/10/2022	1,012 lbs/Ac	1,967 lbs/Ac	2,740 lbs/Ac
Wooster, Wayne County	7/15/2022	12/21/2022	Not available	Not available	Not available

Harvest could have occurred earlier in some sites, but due to equipment availability, harvest happened later. All sites were harvested using a small plot combine with corn head. Nitrogen application was added in at least two locations. At Northwest, 90 lbs of Nitrogen per Acre were applied using Urea on August 2^{nd} . At Western Station, 75 lbs of Nitrogen per Acre were applied as side dress of 28-0-0 on August 1^{st} . Weeds were managed with pre and post-emergence applications as needed.

Preliminary results showed that stand establishment was very variable across the three varieties and sites. Other challenges included equipment availability (especially for harvest), bird damage (estimated 10 to 50% in at least one of the sites), plant lodging in some cases, and the low percentage of germination that led to lower stand counts and possibly limited crop yields. Future work will address hybrid selection, germination, fertility, bird control and marketing.

Note that this work was done on conventional ground, <u>not organic</u>. Results under organic systems may differ, and other factors would need considered. If you have any questions, please reach out to Osler Ortez (<u>ortez.5@osu.edu</u>), Jim Jasinski (<u>jasinski.4@osu.edu</u>) or Eric Richer (<u>richer.5@osu.edu</u>).

Harvest

CFAES

Results

USDA-ERS (10/14/22):

Average U.S. sunflower seed yields are forecasted to reach <u>1,782 pounds</u> per acre in <u>2022/23</u>

Take-Aways: 1 yr. summary

- Hybrid/variety differences in establishment and relative maturities
- Lodged plants, seeding rates or hybrid, Wooster site
- Birds feeding, up to 50% in a few cases
- Harvest challenges (corn combine, some shatter, seed moisture)
- New opportunities in crop rotations, despite delayed planting/harvest
- Yields as good or better than national averages: 1,800-1,900 lbs/Ac
- Future work: Address seed quality, hybrid selection, germination, fertility, bird control, and marketing

Thank you!!! Any questions?

Osler A. Ortez

Corn & Emerging Crops Horticulture and Crop Science

ortez.5@osu.edu | (330) 263-9725 214 Williams Hall, Wooster, OH